OPERATING INSTRUCTIONS FOR

SYLVANIA

Type 108

Cathode-Ray Oscilloscope

Sylvania Electric Products Inc. Industrial Apparatus Plant

Emporium, Pennsylvania

OPERATING INSTRUCTIONS

FOR

Sylvania Type 108

 Cathode-Ray Oscilloscope

Sylvania Electric Products Inc.
Industrial Apparatus Plant
Emporium, Pennsylvania

Sylvania Oscilloscope Type 108

GENERAL SPECIFICATIONS

I. Cathode-Ray Tube
II. Input Impedance
III. Amplifier Frequency Response
IV. Deflection Factor
V. Horizontal Sweep
VI. Power Supply Source
VII. Physical Specifications

INSTRUCTIONS

I. Power Supply
a. Precautions
b. Characteristics
c. Requlated Supply
II. Operation
a. Cathode-Ray Tube Controls
b. Sweep Circuit

1. Frequency Adjustments
2. Synchronizing Controls
r. Y-Axis
3. Deflection Plates
4. Amplifier
5. Prole
6. Sensitivity
d. X-Axis
7. Deflection Plates
8. Amplifiers
9. Sensitivity
e. Precautions
f. Intensity Modulation
g. 60 Cycle Test Signal
III. Maintenance
a. Components
b. Parts Placement
c. Removal of Unit from Cabinet
d. Mounting Strip Assemblies

GENERAL SPECIFICATIONS

I. Cathode-Ray Tube:
Type 3GP1
Accelerating Potential 1000 Volts
II. Input Impedance:
Terminals Probe Direct Direct
a. Y-Axis 2 meg .25 mmf .1 meg. 16 mmf .10 meg .20 mmf .5 meg .25 mmf .b. X-Axis 2 meg. 25 mmf . 10 meg. 20 mmf .5 meg .25 mmf .
III. Amplifier Frequency Response:Y-Axis......... . Sine wave response uniform within 3 db from 10 cycles to2 megacycles at any attenuator setting.
X-Axis......... Uniform within 3 db from 10 cycles to 100 kilocycles at any attenuator setting.
IV. Deflection Factor:
a. With AmplifierY-Axis Terminals. 0.1 volts r.m.s./inch deflection
Y-Axis with Probe 0.4 volts r.m.s./inch deflection
X-Axis Terminals. 0.7 volts r.m.s./inch deflection
b. To Deflection Plates Y-Axis. 25 volts r.m.s./inch deflection X-Axis......................... 28 volts r.m.s./inch deflection
V. Horizontal Sweep:
Frequency Range.................................. . . 15 to 30,000 c.p.s.
Direction of Sweep Left to right
Synchronizing Signal Sources. Internal (Y-Signal)
Synchronizing Polarity Either polarity of synch. signal
VI. Power Supply Source:
Potential. 115 volts
Frequency 60 cycles
Power Consumption 150 Watts
Fuse Protection 2 Amps.
VII. Physical Specifications:

Height	14 inches overal
Width.	$83 / 4$ inches overal
Depth.	$163 / 4$ inches overal
Weight 49 pounds

INSTRUCTIONS

I. POWER SUPPLY:

a. Precautions:

Due to potential differences as high as 1500 volts in the Sylvania Type 108 Oscilloscope, great care should be exercised when operating this piece of equipment out of its cabinet, and this only when necessary.

b. Characteristics:

The Sylvania Type 108 Oscilloscope is designed for operation on $115 \mathrm{~V} .50-60$ cycles only. The high voltage section of the power supply delivers approximately 1000 volts negative with respect to ground to the cathode of the 3GP1. The low voltage section delivers approximately 400 volts positive and a regulated EMF of 200 volts to the low-level stages.

c. Regulated Supply:

Adjustment of the regulated voltage is made by varying a potentiometer available through a hole in the side of the base chassis. A voltmeter should always be used when this adjustment is made to return the output to 200 volts.

II. Operation:

a. Cathode-Ray Tube Controls:

To place the oscilloscope into operation the power switch is thrown upward to the Power-On position, making certain the pilot light comes on. Set the X and Y-Positioning Controls so that the knobs point upward, and advance the focus and intensity controls to about $2 / 3$ of their maximum rotation. Final adjustment of controls is made after the tubes reach their operating temperature. For general use, the intensity should be kept at as low a level as permits sufficient viewing. A spot or trace of high intensity, stationary on the screen for any appreciable length of time, will result in burning of the screen.

b. Sweep Circuit:

1. Frequency Adjustments:

Controls for the sweep oscillator circuit are the Snych. Selector and Frequency Range Switches and the Synch.

Signal and Frequency Vernier Potentiometers. Adjustment of the Frequency Range Switch gives an approximate frequency, while the exact frequency is obtained through variation of the Frequency Vernier Control. The range of the linear sweep is from 15 to 30,000 cycles per second. The letter K on the panel represents Kilo, or one thousand.

2. Synchronizing Controls:

The Synch. Selector Switch makes it possible to use synchronizing voltages from one of three sources: internal, 60 cycles, or external. A binding post is placed on the panel for introduction of the external voltage. The amount of synchronizing voltage applied to the oscillator is controlled by the Synch. Signal Control. The minimum synchronizing voltage necessary to keep the pattern stationary on the screen should be used to prevent non-linearity of the sweep. This prevents waveform distortion from this source. Polarity of the synchronizing voltage is controlled by selecting the desired side of the zero setting of the Synchronizing Signal Control. With the potentiometer set on the \pm side of zero, the sweep synchronizes on the negative half-cycle of an external synchronizing signal or the positive half-cycle of an internal synchronizing signal. On the \mp side, the reverse is true.

c. Y-Axis:

1. Deflection Plates:

The Y-Axis, or vertical, inputs are: direct input to the deflection plates, direct input to the amplifiers, and probe input to amplifiers. For direct input to the deflection plates, the input is brought to binding posts D3 and D4 and the Deflection-Plate Connections Switch is turned to Terminals. Connections are made directly to the deflection plates when the frequency of the applied signal is ton high for distortionless amplification by the amplifiers.

2. Amplifier:

Direct input to the amplifier is made to the binding posts on the lower left of the panel, with the Terminals-Probe Switch in the Terminals position, and the Deflection-Plate Connections Switch in the Amplifier position.

PARTS LIST

Cub.
C
.
$0.25-400 \mathrm{~V}$
3-12 $\mu \mu \mathrm{fd}$.
3-12 $\mu \mu \mathrm{fl}$.
0.001 mica
0.0001 mica
$0.25-400 \mathrm{~V}$
$100 \mu \mathrm{fd} .50 \mathrm{~V}$ Electrolytic
$0.25-400 \mathrm{~V}$
$0.5-400 \mathrm{~V}$
$0.5-400 \mathrm{~V}$
$4-600 \mathrm{~V}$
$01-400 \mathrm{~V}$
$0.5-600 \mathrm{~V}$
$0.25-200 \mathrm{~V}$
$50 \mu \mathrm{fd} .50 \mathrm{~V}$ Electrolytic
$0.1-600 \mathrm{~V}$
$0.1-600 \mathrm{~V}$
$0.5-200 \mathrm{~V}$
$0.05-400 \mathrm{~V}$
$0.1-400 \mathrm{~V}$
$0.1-400 \mathrm{~V}$
$0.5-600 \mathrm{~V}$
$0.5-200 \mathrm{~V}$
0.0001 mica

3-12 $\mu \mu \mathrm{fd}$.
$100 \mu \mathrm{fd}$. 50 V Electrolytic
$0.25-400 \mathrm{~V}$
C
Sub.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.P.3.T.

S2
S3
S.P.D.T.
D.P.D.T.

S4
S5
S6
S7
S8
T1
Chl
S.P.3.T.
D.P.7.T.
D.P.D.T.
S.P.I.T.
S.P.S.T.

Pwr. Trans.
Filter choke

L1
L2
L3
L4
L5
L2
L3
4 specified.

$$
\begin{aligned}
& 0.5-200 \mathrm{~V} \\
& 4-30 \mu \mu \mathrm{fd} . \\
& 0.15-400 \mathrm{~V} \\
& 0.04-400 \mathrm{~V} \\
& 0.01-600 \mathrm{~V} \\
& 0.0025-400 \mathrm{~V} \\
& 0.0006 \text { mica } \\
& 0.0002 \text { mica } \\
& 0.25-200 \mathrm{~V} \\
& 0.5-600 \mathrm{~V} \\
& 0.1-600 \mathrm{~V} \\
& 0.1-600 \mathrm{~V} \\
& 0.01-600 \mathrm{~V} \\
& 0.01-600 \mathrm{~V} \\
& 0.01-600 \mathrm{~V} \\
& 0.01-600 \mathrm{~V} \\
& 0.05-2000 \mathrm{~V} \\
& 4-600 \mathrm{~V} \\
& 4-600 \mathrm{~V} \\
& 4-600 \mathrm{~V} \\
& 0.5-1500 \mathrm{~V} \\
& 0.5-1500 \mathrm{~V} \\
& 0.5-200 \mathrm{~V} \\
& 0.5-600 \mathrm{~V} \\
& 0.05-400 \mathrm{~V} \\
& 4-30 \mu \mu \mathrm{fl} . \\
& 0.005 \mu \mathrm{fd} .-600 \mathrm{~V}
\end{aligned}
$$

Fuse Ext.
0.175 mh . choke
0.175 mh . choke
0.175 mh . choke

10 mh . choke
10 mh . choke

Note:-All cond. values in μ fds. \& all resistor values in ohms unless ctherwise

PARTS LIST

Continued

R
Sub.

1	1 meg.	$1 / 2 \mathrm{~W} 5 \%$
2	1 meg.	$1 / 2 \mathrm{~W} 5 \%$
3	10 K	$1 / 2 \mathrm{~W} 5 \%$
4	110 K	$1 / 2 \mathrm{~W} 5 \%$
5	1 meg.	$1 / 2$
6	47	$1 / 2$
7	1 K	$1 / 2$
8	2 K	Pot.
9	220	$1 / 2$
10	470 K	$1 / 2$
11	150	$1 / 2$
12	56 K	1 W
13	100 K	$1 / 2$
14	4700	$1 / 2$
15	10 K	2 W
16	47	$1 / 2$
17	470 K	$1 / 2$
18	100 K	1 W
19	15 K	$1 / 2$
20	500	5 WNI
21	47	$1 / 2$
22	3500	10 WNI
23	12.5 K	10 W
24	3500	10 WNI
25	33 K	$1 / 2$
26	470 K	$1 / 2$
27	1500	$1 / 2$
28	8200	$1 / 2$
29	200 K	$\mathrm{C} . \mathrm{T}$. Pot.
30	22 K	$1 / 2$
31	10 K	1 W
32	10 K	1 W
33	1.5 K	$1 / 2$
34	680 K	1 W
35	4 meg.	Pot.
36	120 K	$1 / 2 \mathrm{~W} 5 \%$
37	1 meg.	$1 / 2 \mathrm{~W} 5 \%$
38	1 meg.	$1 / 2$
39	10 K	$1 / 2$
40	10 K	Pot.
41	1 K	$1 / 2$
42	1 meg.	$1 / 2$
10		

R
Sub.
43 68K 2W
44 100K 1
$4547 \quad 1 / 2$
$461 \mathrm{meg} . \quad 1 / 2$
47 15K $1 / 2$
$48 \quad 2.2 \mathrm{~K} \quad 1 \mathrm{~W}$
$491 \mathrm{meg} . \quad 1 / 2$
$50 \quad 47 \quad 1 / 2$
$51 \quad 82 \mathrm{~K} \quad 2 \mathrm{~W}$
$52 \quad 39 \mathrm{~K} \quad 2 \mathrm{~W}$
$53 \quad 22 \mathrm{~K} \quad 1 / 2$
$54 \quad 22 \mathrm{~K} \quad 1 / 2$
$55 \quad 39 \mathrm{~K} \quad 2 \mathrm{~W}$
564.7 meg. $1 / 2$

574 meg . dual pot.
584.7 meg. $1 / 2$
594.7 meg. $1 / 2$
$60 \quad 4.7$ meg. $1 / 2$
$61 \quad 100 \mathrm{~K} \quad 1 / 2$
62 100K 1/2
634 meg . dual pot.
64 10K 1W
65 100K 1W
66 100K Pot.
67 150K 1 W
68500 K Pot.
69 680K 1 K
$70 \quad 220 \mathrm{~K} \quad 1 / 2$
$71 \quad 1 \mathrm{~K} \quad 1 / 2$
72 330K 1W
73 47K 1/2
$74 \quad 150 \quad 1 / 2$
$75470 \mathrm{~K} \quad 1 / 2$
$7668 \mathrm{~K} \quad 1 / 2$
77 75K Pot.
781 meg. 2 W
79 470K $\quad 1 \mathrm{~W}$
$80 \quad 750 \mathrm{~K} \quad 1 \mathrm{~W} 5 \%$
$31 \quad 240 \mathrm{~K} \quad 1 / 2 \mathrm{~W} 5 \%$
82 33K 1/2
$83 \quad 22 \mathrm{~K} \quad 1 / 2$

3. Probe:

Probe input to the amplifier is made through the Probe with the Terminals-Probe Switch in Probe position. The Test Probe consists of a frequency compensated 4:1 attenuator in an insulated probe supplied with a length of coaxial cable and a connector. The input capacitance of the Test Probe is about 16 mmf . This permits connection to relatively highimpedance points without serious loading effects on these circuits.

4. Sensitivity:

Y-Axis gain is controlled by the Y-Gain potentiometer and Y-Attenuation Switch. The frequency compensated Y-Axis Attenuator gives ratios of $1: 1,10: 1$, and $100: 1$. The cathodefollower input stage is so designed that the extreme counterclockwise position of the gain control does not reduce the signal amplitude to zero, but to approximately 10 per cent of the "full gain" position. By using the Y-Attenuator in conjunction with the Y-Gain control, a continuous adjustment of input gain is had of input voltages ranging from about 0.1 to 300 volts. Maximum voltages for the $1: 1,10: 1$, and $100: 1$ ratios of the Y-Attenuator are about 3,30 , and 300 volts R.M.S. respectively. Overloading of the amplifier is prevented as long as the entire pattern is kept on the screen.

d. X-Axis:

1. Deflection Plate:

The X-Axis, or horizontal, inputs are: direct input to the deflection plates and direct input to the X-Amplifiers. For direct input to the deflection plates, the input is brought to binding posts D1 and D2, and the Deflection-Plate Connections Switch is turned to Terminals.

2. Amplifiers:

Direct input to the amplifiers is made to the binding posts on the lower right of the panel, with the Deflection-Plate Connections Switch in the Amplifier position, and the Frequency Range Switch turned to its extreme counter-clockwise, or X-Signal Input, position.

3. Sensitivity:

X -Axis gain is controlled by the X -Gain potentiometer and the X-Attenuation Switch. The X-Attenuation Switch
gives ratios of $1: 1$ and $10: 1$. To prevent overloading the amplifiers, the voltage input to the X-Amplifier should not exceed 5 volts with the attenuator switch in the $1: 1$ position, nor exceed 50 volts in the $10: 1$ position.

e. Precautions:

Care should be taken to prevent exceeding the D-C ratings of the input condensers to the horizontal and vertical amplifiers. The horizontal amplifier input condenser is rated at 200 volts D-C, and the vertical input condenser at 400 volts D-C.

f. Intensity Modulation:

The Intensity Modulation Binding Post connects to the grid of the cathode-ray tube, permitting the introduction of blanking pulses of any desired magnitude or waveform. Caution: The modulation voltage should be kept low enough to prevent cathode-ray grid current from flowing on positive peaks.

g. 60 Cycle Test Signal:

A signal of power line frequency having an amplitude of approximately 2.2 volts peak to peak is provided at the front panel as a source of test signal.

III. MAINTENANCE:

a. Components:

All electrical components of the Type 108 Oscilloscope are hermetically sealed; all paper condensers being of the oil-filled, sealed can type. Should replacement of any components become necessary, use only units meeting the above requirements.

b. Parts Placement:

Tube and filter condenser placement is shown on the chassis label cemented to the side of the base chassis.

c. Removal of Unit from Cabinet:

Removal of the chassis from the cabinet is accomplished by removing seven retaining screws from the top of the panel and two from the rear of the cabinet.

d. Mounting Strip Assemblies:

The following page is a drawing of the mounting strip schematics giving the circuit number and electrical value of each part.

