OPERATING INSTRUCTIONS FOR SYLVANIA Type 108 Cathode-Ray Oscilloscope

Sylvania Electric Products Inc.

Industrial Apparatus Plant Emporium, Pennsylvania

OPERATING INSTRUCTIONS

FOR

Sylvania Type 108 Cathode-Ray Oscilloscope

5/r

Sylvania Electric Products Inc.

Industrial Apparatus Plant

Emporium, Pennsylvania

Sylvania Oscilloscope Type 108

GENERAL SPECIFICATIONS

- I. Cathode-Ray Tube
- II. Input Impedance
- III. Amplifier Frequency Response
- IV. Deflection Factor
- V. Horizontal Sweep
- VI. Power Supply Source
- VII. Physical Specifications

INSTRUCTIONS

- I. Power Supply
 - a. Precautions
 - b. Characteristics
 - c. Regulated Supply

II. Operation

- a. Cathode-Ray Tube Controls
- b. Sweep Circuit
 - 1. Frequency Adjustments
 - 2. Synchronizing Controls
- c. Y-Axis
- 1. Deflection Plates
- 2. Amplifier
- 3. Probe
- 4. Sensitivity
- d. X-Axis
- 1. Deflection Plates
- 2. Amplifiers
- 3. Sensitivity
- e. Precautions
- f. Intensity Modulation
- g. 60 Cycle Test Signal

III. Maintenance

- a. Components
- b. Parts Placement
- c. Removal of Unit from Cabinet
- d. Mounting Strip Assemblies

GENERAL SPECIFICATIONS

Ι.	Cathe	ode-Ray Tu	be:					
	Typ Acc	elerating Po	tential	•••••				3GP1 .1000 Volts
II. a. Y b. X	Input -Axis -Axis	TERMINA 2 meg. 25 n 2 meg. 25 n	: Ls 1mf. 1r 1mf.	Probe neg. 16 mmf.	10 10	DIRECT (Balanced) meg. 20 mm meg. 20 mm	(Ur uf. 5 me uf. 5 me	Direct ibalanced) eg. 25 mmf. eg. 25 mmf.
III.	Ampl Y-A X-A	ifier Freque xis	ncy Resp . Sine wa 2 megao . Uniforn any atte	oonse: ve response u cycles at any a n within 3 db enuator settin	nifor atter fror g.	rm within 3 d nuator settin n 10 cycles	lb from g. to 100 k	10 cycles to ilocycles at
IV.	Defle a. V b. J	ction Factor Vith Amplifi Y-Axis Ter Y-Axis wit X-Axis Ter To Deflection Y-Axis X-Axis	er rminals h Probe. rminals n Plates			0.1 volts r. 0.4 volts r. 0.7 volts r. 25 volts r. 28 volts r.	m.s./inc m.s./inc m.s./inc m.s./inc m.s./inc	h deflection h deflection h deflection h deflection h deflection
V.	Horiz Free Dire Syne Syne	contal Sweep quency Rang ection of Sw chronizing S chronizing F	ge eep ignal Sou Polarity.	urces	• • •	Either polar	. 15 to 3 L Internal	0,000 c.p.s. eft to right (Y-Signal) 60 cycles External ynch. signal
VI.	Powe Pote Frec Pow Fuse	r Supply Sor ential quency er Consump e Protection	urce:					115 volts 60 cycles 150 Watts 2 Amps.
VII.	Physi Heig Wid Dep Wei	cal Specifica ght th th ght	tions:		••••		14 inc 8¾ inc 16¾ inc	ches overall ches overall ches overall .49 pounds

INSTRUCTIONS

I. POWER SUPPLY:

a. Precautions:

Due to potential differences as high as 1500 volts in the Sylvania Type 108 Oscilloscope, great care should be exercised when operating this piece of equipment out of its cabinet, and this only when necessary.

b. Characteristics:

The Sylvania Type 108 Oscilloscope is designed for operation on 115 V. 50-60 cycles only. The high voltage section of the power supply delivers approximately 1000 volts negative with respect to ground to the cathode of the 3GP1. The low voltage section delivers approximately 400 volts positive and a regulated EMF of 200 volts to the low-level stages.

c. Regulated Supply:

Adjustment of the regulated voltage is made by varying a potentiometer available through a hole in the side of the base chassis. A voltmeter should always be used when this adjustment is made to return the output to 200 volts.

II. Operation:

a. Cathode-Ray Tube Controls:

To place the oscilloscope into operation the power switch is thrown upward to the Power-On position, making certain the pilot light comes on. Set the X and Y-Positioning Controls so that the knobs point upward, and advance the focus and intensity controls to about $\frac{2}{3}$ of their maximum rotation. Final adjustment of controls is made after the tubes reach their operating temperature. For general use, the intensity should be kept at as low a level as permits sufficient viewing. A spot or trace of high intensity, stationary on the screen for any appreciable length of time, will result in burning of the screen.

b. Sweep Circuit:

1. Frequency Adjustments:

Controls for the sweep oscillator circuit are the Snych. Selector and Frequency Range Switches and the Synch. Signal and Frequency Vernier Potentiometers. Adjustment of the Frequency Range Switch gives an approximate frequency, while the exact frequency is obtained through variation of the Frequency Vernier Control. The range of the linear sweep is from 15 to 30,000 cycles per second. The letter K on the panel represents Kilo, or one thousand.

2. Synchronizing Controls:

The Synch. Selector Switch makes it possible to use synchronizing voltages from one of three sources: internal, 60 cycles, or external. A binding post is placed on the panel for introduction of the external voltage. The amount of synchronizing voltage applied to the oscillator is controlled by the Synch. Signal Control. The minimum synchronizing voltage necessary to keep the pattern stationary on the screen should be used to prevent non-linearity of the sweep. This prevents waveform distortion from this source. Polarity of the synchronizing voltage is controlled by selecting the desired side of the zero setting of the Synchronizing Signal Control. With the potentiometer set on the + side of zero. the sweep synchronizes on the negative half-cycle of an external synchronizing signal or the positive half-cycle of an internal synchronizing signal. On the \mp side, the reverse is true.

c. Y-Axis:

1. Deflection Plates:

The Y-Axis, or vertical, inputs are: direct input to the deflection plates, direct input to the amplifiers, and probe input to amplifiers. For direct input to the deflection plates, the input is brought to binding posts D3 and D4 and the Deflection-Plate Connections Switch is turned to Terminals. Connections are made directly to the deflection plates when the frequency of the applied signal is too high for distortion-less amplification by the amplifiers.

2. Amplifier:

Direct input to the amplifier is made to the binding posts on the lower left of the panel, with the Terminals-Probe Switch in the Terminals position, and the Deflection-Plate Connections Switch in the Amplifier position.

PARTS LIST

C Sub.			C Sub.			
1		0.25-400V	28	0.5-200V		
2		3-12 μμfd.	29	4-30 µµfd.		
3		3-12 µµfd.	30	0.15-400V		
4		0.001 mica	31	0.04-400V		
5		0.0001 mica	32	0.01-600V		
6		0.25-400V	33	0.0025-400V		
7		100 μ fd. 50V Electrolytic	34	0.0006 mica		
8		0.25-400V	35	0.0002 mica		
9		0.5-400V	36	0.25-200V		
10		0.5-400V	37	0.5-600V		
11		4-600V	38	0.1-600V		
12		0 1-400V	39	0.1-600V		
13		0.5-600V	40	0.01-600V		
14		0.25-200V	41	0.01-600V		
15		50 μ fd. 50V Electrolytic	42	0.01-600V		
16		0.1-600V	43	0.01-600V		
17		0.1-600V	44	0.05-2000V		
18		0.5-200V	45	4-600V		
19		0.05-400V	46	4-600V		
20		0.1-400V	47	4-600V		
21		0.1-400V	48	0.5-1500V		
22		0.5-600V	49	0.5-1500V		
23		0.5-200V	50	0.5-200V		
24		0.0001 mica	51	0.5-600V		
25		3-12 μμfd.	52	0.05-400V		
26		100 µfd. 50V Electrolytic	53	4-30 µµfd.		
27		0.25-400V	54	$0.005~\mu \mathrm{fd}600\mathrm{V}$		
	S1	D.P.3.T.	F1	Fuse Ext.		
	S2	S.P.D.T.	L1	0.175 mh. choke		
	S3	D. P. D. T.	L2	0.175 mh. choke		
	S4	S.P.3.T.	L3	0.175 mh. choke		
	S5	D.P.7.T.	L4	10 mh. choke		
	S6	D.P.D.T.	L5	10 mh. choke		
	S 7	S.P.D.T.				
	S8	S.P.S.T.	Net	All and solve-in		
	T1	Pwr. Trans.	Note:—All cond. values in μ			

Filter choke

Chl

Note:—All cond. values in μ fds. & all resistor values in ohms unless otherwise specified.

PARTS LIST

R Sub.

		R Sub		
1 meg.	½W 5%	43	68K	2W
1 meg.	1/2W 5%	44	100K	1
10K	1/2W 5%	45	47	1/2
110K	1/2W 5%	46	1 meg.	1/2
1 meg.	1/2	47	15K	1/2
47	1/2	48	2.2K	1W
1 K	1/2	49	1 meg.	1/2
2K	Pot.	50	47	1/2
220	$\frac{1}{2}$	51	82K	2W
470K	$\frac{1}{2}$	52	39K	2W
150	$\frac{1}{2}$	53	22K	$\frac{1}{2}$
56K	1 W	54	22K	1/2
100K	$\frac{1}{2}$	55	39K	2W
4700	$\frac{1}{2}$	56	4.7 meg.	1/2
10K	2W	57	4 meg.	dual pot.
47	$\frac{1}{2}$	58	4.7 meg.	$\frac{1}{2}$
470K	$\frac{1}{2}$	59	4.7 meg.	1/2
100K	1 W	60	4.7 meg.	$\frac{1}{2}$
15K	$\frac{1}{2}$	61	100K	$\frac{1}{2}$
500	5WNI	62	100K	$\frac{1}{2}$
47	$\frac{1}{2}$	63	4 meg.	dual pot.
3500	10WNI	64	10K	1W
12.5K	10W	65	100K	1W
3500	10WNI	66	100K	Pot.
33K	$\frac{1}{2}$	67	150K	1 W
470K	$\frac{1}{2}$	68	500K	Pot.
1500	$\frac{1}{2}$	69	680K	1 W
8200	$\frac{1}{2}$	70	220K	$\frac{1}{2}$
200K	C. T. Pot.	71	1K	$\frac{1}{2}$
22K	$\frac{1}{2}$	72	330K	1 W
10K	1 W	73	47K	$\frac{1}{2}$
10K	1 W	74	150	$\frac{1}{2}$
1.5K	$\frac{1}{2}$	75	470K	$\frac{1}{2}$
680K	1 W	76	68K	$\frac{1}{2}$
4 meg.	Pot.	77	75K	Pot.
120K	½W 5%	78	1 meg.	2W
1 meg.	½W 5%	79	470K	1W
1 meg.	$\frac{1}{2}$	80	750K	1W 5%
10K	$\frac{1}{2}$	81	240K	1/2W 5%
10K	Pot.	82	33K	$\frac{1}{2}$
1 K	$\frac{1}{2}$	83	22K	$\frac{1}{2}$
1 meg.	$\frac{1}{2}$			

3. Probe:

Probe input to the amplifier is made through the Probe with the Terminals-Probe Switch in Probe position. The Test Probe consists of a frequency compensated 4:1 attenuator in an insulated probe supplied with a length of coaxial cable and a connector. The input capacitance of the Test Probe is about 16 mmf. This permits connection to relatively highimpedance points without serious loading effects on these circuits.

4. Sensitivity:

Y-Axis gain is controlled by the Y-Gain potentiometer and Y-Attenuation Switch. The frequency compensated Y-Axis Attenuator gives ratios of 1:1, 10:1, and 100:1. The cathodefollower input stage is so designed that the extreme counterclockwise position of the gain control does not reduce the signal amplitude to zero, but to approximately 10 per cent of the "full gain" position. By using the Y-Attenuator in conjunction with the Y-Gain control, a continuous adjustment of input gain is had of input voltages ranging from about 0.1 to 300 volts. Maximum voltages for the 1:1, 10:1, and 100:1 ratios of the Y-Attenuator are about 3, 30, and 300 volts R.M.S. respectively. Overloading of the amplifier is prevented as long as the entire pattern is kept on the screen.

d. X-Axis:

1. Deflection Plate:

The X-Axis, or horizontal, inputs are: direct input to the deflection plates and direct input to the X-Amplifiers. For direct input to the deflection plates, the input is brought to binding posts D1 and D2, and the Deflection-Plate Connections Switch is turned to Terminals.

2. Amplifiers:

Direct input to the amplifiers is made to the binding posts on the lower right of the panel, with the Deflection-Plate Connections Switch in the Amplifier position, and the Frequency Range Switch turned to its extreme counter-clockwise, or X-Signal Input, position.

3. Sensitivity:

X-Axis gain is controlled by the X-Gain potentiometer and the X-Attenuation Switch. The X-Attenuation Switch gives ratios of 1:1 and 10:1. To prevent overloading the amplifiers, the voltage input to the X-Amplifier should not exceed 5 volts with the attenuator switch in the 1:1 position, nor exceed 50 volts in the 10:1 position.

e. Precautions:

Care should be taken to prevent exceeding the D-C ratings of the input condensers to the horizontal and vertical amplifiers. The horizontal amplifier input condenser is rated at 200 volts D-C, and the vertical input condenser at 400 volts D-C.

f. Intensity Modulation:

The Intensity Modulation Binding Post connects to the grid of the cathode-ray tube, permitting the introduction of blanking pulses of any desired magnitude or waveform. Caution: The modulation voltage should be kept low enough to prevent cathode-ray grid current from flowing on positive peaks.

g. 60 Cycle Test Signal:

A signal of power line frequency having an amplitude of approximately 2.2 volts peak to peak is provided at the front panel as a source of test signal.

III. MAINTENANCE:

a. Components:

All electrical components of the Type 108 Oscilloscope are hermetically sealed; all paper condensers being of the oil-filled, sealed can type. Should replacement of any components become necessary, use only units meeting the above requirements.

b. Parts Placement:

Tube and filter condenser placement is shown on the chassis label cemented to the side of the base chassis.

c. Removal of Unit from Cabinet:

Removal of the chassis from the cabinet is accomplished by removing seven retaining screws from the top of the panel and two from the rear of the cabinet.

d. Mounting Strip Assemblies:

The following page is a drawing of the mounting strip schematics giving the circuit number and electrical value of each part.

